Polish team claims leap for wonder material graphene

Prof. Jacek Baranowski of the Institute of Electronic Materials Technology in Warsaw.

Prof. Jacek Baranowski of the Institute of Electronic Materials Technology in Warsaw.

It’s billed as the wonder material of the 21st century with the power to revolutionise micro-electronics and it has won its pioneers the 2010 Nobel Physics Prize.

Now Polish scientists say they have discovered a new method to produce entire layers of graphene, a move that should help to propel it out of the lab and into everyday life.

Just one atom thick, the novel form of carbon is the world’s thinnest and strongest nano-material, almost transparent and able to conduct electricity and heat.

“This is an important step forward on the path to the production of transistors and then integrated circuits made of graphene,” Prof. Jacek Baranowski of the Institute of Electronic Materials Technology (ITME) in Warsaw told AFP.

Graphene transistors would, in theory, be able to run at faster speeds and cope with higher temperatures than today’s classic silicon computer chips.

Graphene’s transparency also means it could potentially be used in touch screens and even solar cells, and when mixed with plastics would provide light but super-strong composite materials for next-generation satellites, planes and cars.

Electrons can travel relatively huge distances through graphene – a thousandth of a millimetre is a lot in their world – without being hampered by impurities which are a problem in the silicon used in 95 per cent of electronic devices.

Graphene is also 200 times tougher than steel.

But the catch so far has been a lack of methods to turn out layers of it, and that is where the work of Baranowski’s research team come in.

“The new method is based on using the technique of epitaxy on silicon carbide in a gaseous, pressurised environment,” said Baranowski, who also works at the University of Warsaw’s experimental physics faculty.

Epitaxy is a technique for growing a micro-thin, honeycomb-shaped lattice of the desired material.

While it is currently possible to produce graphene layers, relatively large ones can only be made on a metal base. That hampers graphene’s electronics potential.

Without such a base, current techniques only allow for a maximum layer surface of four square inches (25 square centimetres).

Current methods also fail to produce graphene as uniform as that devised by Baranowski’s team, he said.

It is precisely that uniformity that would make graphene more readily usable in the hi-tech sector, he added.

The team’s discovery was announced in the most recent edition of the US scientific periodical Nano Letters.


See our Comments Policy Comments are submitted under the express understanding and condition that the editor may, and is authorised to, disclose any/all of the above personal information to any person or entity requesting the information for the purposes of legal action on grounds that such person or entity is aggrieved by any comment so submitted. Please allow some time for your comment to be moderated.

Comments not loading? We recommend using Google Chrome or Mozilla Firefox with javascript turned on.
Comments powered by Disqus