Gerard Liger-Belair lives in abubble, and he doesn’t care who knows it.

When you pour a glass, you are releasing a fluid with two million bubbles

Bubbles are his passion. And they have given the 41-year-old French scientist arguably the best job in all of physics.

In a lab supplied with top-notch champagne, Liger-Belair delves into the secrets of fizz: what gives this legendary wine its sparkle to the eye, its tingle to the tongue?

A bottle of bubbly without the bubbles – all 10 million of them – would be a sad thing indeed, admits Liger-Belair.

Champagne is made under a two-stage, tightly-regulated process.

First, it is made into a wine from grapes exclusive to the Champagne region east of Paris. Then a tiny quantity of yeast, plus sugar to feed it, is added.

The bottle is stored upside down and rotated daily so that the fermentation deposit slides to the neck, which is then frozen, forming a plug of sediment that is then withdrawn. The bottle is secured by a cork and wire cage, and allowed to mature.

When you pour a glass of it, you are also releasing a fluid with two million bubbles, which is where the fun science begins.

How bubbles form, rise and cluster in the glass will determine the champagne’s visual allure.

As you bring the glass closer to your mouth, the bursting of bubbles at the surface will release tiny droplets to your face and aromatic molecules to your nose, adding a discreet, sensual feel.

And when you take a sip, those bubbles will sculpt the “feel” of the wine – too many are unpleasant, too few are disappointing – and activate CO2 receptors on the tongue to send tiny signals of excitement to the brain.

Using an ultra-high-resolution mass spectrometer in Germany to analyse the chemical structure of samples, Liger-Belair’s team found that this effervescence is laden with “tensio-active” molecules, hundreds of them aromatic. Liger-Belair also figured out why strings of bubbles rise from certain points in glass. It happens when microscopic fibres – left by a kitchen towel or often just an airborne particle – stick to the side, allowing molecules of dissolved CO2to coalesce and form bubbles.

The finding is important for champagne fans and the catering industry. Glasses that are retrieved from a dishwasher, where they have been washed and blown-dry upside down, could be so ultra-clean that – horribly – few bubbles form.

Top-market glassmakers now use lasers to etch a tiny crown of spots at the bottom of the glass, creating flaws to make bubbles form and rise in a pretty ring.

Champagne fans can make a few small scratches of their own – “no more, otherwise you have a huge degassing,” says Liger-Belair – with a spiked tool. This year, Liger-Belair and colleagues issued a devastating verdict on a debate that had raged for hundreds of years. Should you drink champagne from a tall, long-stemmed glass, a flute in French?

Or should it be a coupe, the shallow cup that according to legend is moulded on the breast shape of Marie-Antoinette?

Gas chromatography showeda coupe loses CO2 at least a third faster than a flute. So unless you drink very quickly, you lose theprecious effervescence.

In similar vein, drinking champagne from a plastic cup can be a drab experience because the sides are hydrophobic, or liquid repelling. The bubbles adhere to the sides through capillary action and inflate into the size of tiny balls.

Liger-Belair’s work has been published in peer-reviewed journals aimed at fluid physicists and beverage specialists who deal with other sparkling wines, beers and sodas.

Sign up to our free newsletters

Get the best updates straight to your inbox:
Please select at least one mailing list.

You can unsubscribe at any time by clicking the link in the footer of our emails. We use Mailchimp as our marketing platform. By subscribing, you acknowledge that your information will be transferred to Mailchimp for processing.